A differential geometric criterion for Moishezon spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moishezon Spaces in Rigid Geometry

We prove that all proper rigid-analytic spaces with “enough” algebraically independent meromorphic functions are algebraic (in the sense of proper algebraic spaces). This is a non-archimedean analogue of a result of Artin over C.

متن کامل

Projectivity criterion of Moishezon spaces and density of projective symplectic varieties

A Moishezon manifold is a projective manifold if and only if it is a Kähler manifold [Mo 1]. However, a singular Moishezon space is not generally projective even if it is a Kähler space [Mo 2]. Vuono [V] has given a projectivity criterion for Moishezon spaces with isolated singularities. In this paper we shall prove that a Moishezon space with rational singularities is projective when it is a K...

متن کامل

Explicit Construction of New Moishezon Twistor Spaces

In this paper we explicitly construct Moishezon twistor spaces on nCP for arbitrary n ≥ 2 which admit a holomorphic C-action. When n = 2, they coincide with Y. Poon’s twistor spaces. When n = 3, they coincide with the one studied by the author in [14]. When n ≥ 4, they are new twistor spaces, to the best of the author’s knowledge. By investigating the anticanonical system, we show that our twis...

متن کامل

A Criterion for Erdős Spaces

In 1940 Paul Erdős introduced the ‘rational Hilbert space’, which consists of all vectors in the real Hilbert space 2 that have only rational coordinates. He showed that this space has topological dimension one, yet it is totally disconnected and homeomorphic to its square. In this note we generalize the construction of this peculiar space and we consider all subspaces E of the Banach spaces p ...

متن کامل

Differential Geometric Aspects of Alexandrov Spaces

We summarize the results on the differential geometric structure of Alexandrov spaces developed in [Otsu and Shioya 1994; Otsu 1995; Otsu and Tanoue a]. We discuss Riemannian and second differentiable structure and Jacobi fields on Alexandrov spaces of curvature bounded below or above.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 1980

ISSN: 0025-5831,1432-1807

DOI: 10.1007/bf01420088